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Our goal is to solve the ODE:

) (1)

where we are to advance the independent variables y by marching forward in time ¢ using a step
size h. Here time levels are denoted by subscripts. The “modified Euler” method (e.g., [1, 2]) uses
a forward-Euler step as a predictor to yield a provisional estimate ¢;11 of the dependent variables
at the advanced time level:

i1 = yi + hf(ti,yi) - (2)
The corrector step uses the average of f at the starting point of the step and f at the provisional
point, instead of simply f at the starting point:

M Pt i) + () (3)

yi+1:yi+2[

This is a better approximation to the Taylor series expansion of the solution. It yields an error of
O(h3) per step, and a cumulative error of O[h?(b—a)] in the approximation to y(b) that is obtained

by applying the method over the interval [a,b]. Thus the method is “second order accurate,” at
the cost of two evaluations of the function f per step.

In contrast, the “partially-corrected Euler” method requires only a single function evaluation per
step; nonetheless, it is also second order accurate. On the initial timestep, its predictor step is
identical to that of the modified Euler method; however, for all subsequent steps the function
evaluation “left over” from the previous step is used for the predictor. Thus the partially-corrected
Euler method is:

Uit1 = Yi + hf(ti, i) (4)

h
Y =Yt g Lf (tiv1, Jir1) + f(ti, 5i)] (5)

so that only in the corrector step is there an evaluation of f.

The above formulation requires that y;11 and f(t;11,7;+1) be saved at the end of each step. It also
requires that y;, g;+1, and f(¢;,9;) be saved in the middle of each step after the predictor advance.
It is possible to reduce the requirement for additional mid-step storage by rewriting eq. 5 as:

- h - -
Yir1 = i1 + 5 [f(tiv1s Girr) — f(Li, 0)] (6)
so that at mid-step it is necessary to save only 7;+1 and f(¢;,9;), and this can be done using the
same arrays employed for the end-of-step storage.

It is important to note that predictor-corrector methods are not symplectic [4, 5], and so in general
they are not preferred for computing particle orbits; for an extensive discussion see [5]. Nonetheless,
they remain of broad general utility, and the reduced computational effort of the partially corrected
Euler method may be appreciated.

*Work performed under auspices of the U.S. D.O.E. by the University of California, Lawrence Livermore National
Laboratory under Contract No. W-7405-ENG-48.



Addendum - energy of a particle moving in harmonic well

The Modified Euler algorithm for particle motion in a harmonic well is:

Tiyn = x;+hy; (7)
62’-‘,—1 = U; — ha:z (8)
riy1 = (1— h2/2)$¢ + hv; (9)
vig1 = —hx;+ (1 —h?/2)v; . (10)
The total energy, defined as (z? +v?)/2, is obtained by squaring each of the latter two expressions:
a? = (1—h%/2)%27 + 2h(1 — h*/2)zv; + h*v? (11)
vl = (1—h%*/2)%07 —2h(1 — h?/2)z0; + h*a? (12)
and then taking their sum and dividing by 2:
(@fa +0i0)/2 = [ =h%/2) + %] (aF +07)/2 (13)
[1+n*/4] (22 + v2)/2 (14)

so that the energy grows by a factor of (14 h*/4) per timestep.

We have yet to work out the corresponding expression for the partially-corrected Euler method.
However, a simple numerical test confirms that it affords damping of magnitude comparable to
that of the growth associated with modified Euler, and a similar phase error. The leapfrog scheme
(which, in contrast to the above methods, is particular to second-order ODE’s) affords an oscillating
energy and a smaller phase error. Use of a special energy measure, (ac? + vi_1/20i11 /2) /2, for
the leapfrog scheme yields a constant energy slightly smaller than the initial energy computed
conventionally [6]. In a typical test, the particle was launched at (x,y) = (1,0), and followed for
ten nominal periods using 80 steps per nominal period. The true orbit is a circle; Figure 1 shows
the particle’s location in the (z,v) phase space on successive “laps” for the three schemes, in an
expanded view near (1,0). Ideally, the particle would always land at the centers of the small circles
in the figure, returning to (1,0) on each lap. Figure 2 shows the time histories of the total particle
energy (z2 + v?)/2 for the three schemes, using the conventional energy measure.
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Trajectories in phase space

0.10F' "
i

] ]
¢
0.05 - # -

0.00 - -
F Leapfrog .

—-0.05 Partially-corrected Euler Modified Euler .

I

-0.10

e
YT I N Y Y = = A I I A N A Y N SN N |

|
0.90 0.95 .00 1.05 1.10

Figure 1: Particle locations in (z,v) phase space at successive transits of the orbit near the turning
point at +z, for modified Euler (red), partially-corrected Euler (green), and leapfrog (blue) schemes.
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Figure 2: Evolution of total particle energy, for modified Euler (red), partially-corrected Euler
(green), and leapfrog (blue) schemes.



